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Abstract—Multicore nodes have become ubiquitous in just a
few years. At the same time, writing portable parallel software
for multicore nodes is extremely challenging. Widely available
programming models such as OpenMP and Pthreads are not
useful for devices such as graphics cards, and more flexible
programming models such as RapidMind are only available com-
mercially. OpenCL represents the first truly portable standard,
but its availability is limited. In the presence of such transition,
we have developed a minimal application programming interface
(API) for multicore nodes that allows us to write portable parallel
linear algebra software that can use any of the aforementioned
programming models and any future standard models. We utilize
C++ template meta-programming to enable users to write parallel
kernels that can be executed on a variety of node types, including
Cell, GPUs and multicore CPUs. The support for a parallel node
is provided by implementing a Node object, according to the
requirements specified by the API. This ability to provide custom
support for particular node types gives developers a level of
control not allowed by the current slate of proprietary parallel
programming APIs. We demonstrate implementations of the API
for a simple vector dot-product on sequential CPU, multicore
CPU and GPU nodes.

I. INTRODUCTION

Multicore and manycore processors have become the stan-
dard building block for desktop and scalable computers. The
relationship between clock rate and power consumption, cou-
pled with a limited ability to handle dissipated heat, means
that performance improvements are now coming in the form
of a growing number of parallel cores instead of an increased
clock rate. While multicore processors have been present in
distributed-memory systems since the early 1990s, the major-
ity of scientific applications for these system were developed
using only a distributed memory model. This is not to suggest
that multiple cores per node have not been useful; scientific
codes using a distributed-memory programming model (e.g.,
MPI) can benefit from multicore nodes treating each core as
a node unto itself. In the particular case of a distributed-
memory code using MPI, a cluster of m nodes with k cores
per node can be launched with p = m ∗ k MPI processes.
This MPI-only approach is popular, due to its simplicity and
current success [1]. However, it is unlikely that this approach

will continue to scale as we move from moderately multicore
nodes (approx. 10 cores per node) to manycore nodes (tens or
hundreds of cores per node). Even now it is clear that some
important primitives can benefit from an explicitly shared-
memory programming approach. Furthermore, if hardware
requirements continue to favor increasing levels of parallelism
over increasing clock frequencies, sequential codes will no
longer see the gradual improvement that was experienced in
the past. It will then be necessary to exploit some level of
parallelism to see continued speed-up on future processors.

Another disadvantage of the distributed-memory approaches
is that they are typically aimed at programming general pur-
pose processors and are less amenable to the current generation
of special-purpose multicore and manycore processors (e.g.,
GPU, STI Cell, FPGA). These special-purpose processors
constitute another reason for the recent attention on multicore
computing. Their rapidly increasing power and programma-
bility motivates their appeal for scientific computing. Mod-
ern desktops and workstations include graphics processing
units (GPUs) with hundreds of programmable cores, whose
combined computational power often eclipses the system’s
CPU. The hardware support for parallelism, as well as the
superior memory bandwidth on these devices, has made them
a target for high-performance computing. At the same time,
the introduction of numerous APIs for programming GPUs
for general-purpose computing has removed the need to em-
ploy graphics-specific languages. For example, NVIDIA has
developed the CUDA [2] architecture for programming recent
GPUs from the company, and similar efforts are underway
to support architectures from other hardware vendors [3],
[4]. The use of special-purpose hardware is not limited to
GPUs. The Los Alamos Roadrunner [5] utilizes STI Cell
processors similar to those used in the Sony Playstation 3
video game console, whereas the Anton supercomputer [6]
uses custom-built hardware for the solution of a specific
scientific problem (molecular dynamics). In the case of the
Roadrunner supercomputer, it is necessary to harness the Cell
co-processors as they constitute most of the computational
power of the computer.



The diversity of multicore hardware platforms has motivated
the creation of a number of approaches for programming them.
As previously mentioned, one popular approach for handling
homogenous multicore nodes is to apply current distributed-
memory programming models to the individual cores. Alter-
natively, there are a number of shared-memory programming
models, with Pthreads and OpenMP being the most popular;
a more recent effort is Intel’s Thread Build Blocks (TBB) [7].
For heterogenous multicore nodes, there are at least as many
programming models as there are architectures. Recently there
have been several attempts to define a programming environ-
ment that can be targeted to diverse architectures, including
multicore CPUs, GPUs and the STI Cell. RapidMind’s pro-
prietary Multicore Development Platform [8] provides a single
C++ programming interface capable exploiting multiple back-
ends. More recently, the OpenCL [9] effort has defined an
open standard for programming multicore processors. With
backing from numerous hardware and software vendors, this
framework consists of a new language (based on C) for writing
parallel kernels.

In this paper, we propose a minimal, light-weight API for
writing kernels for parallel execution on multicore compute
nodes. We can develop such an API because, even though there
are many competing multicore and manycore programming
models, there is a common work-data registration and execu-
tion model that works across all of them. Similar to TBB and
RapidMind, our API exploits C++ template metaprogramming
to enable user kernels to be compiled to a generic threaded
back-end. Like OpenCL and RapidMind, these kernels can
be compiled to a diversity of parallel architectures. Unlike
the aforementioned, the proposed API is fully open. Our
motivation is not in developing new APIs to compete with
current standards. However, the current solutions are not
sufficiently portable, as they address a limited number of
computing scenarios. More significantly, the current solutions
focus mainly on the manner in which parallel kernels are
written, leaving little (if any) ability to specify the manner in
which those kernels are executed. The proposed API allows
application developers to write parallel kernels, while also
allowing node developers full flexibility in support mission-
critical node types.

II. PROGRAMMING MODEL AND INTERFACE

The concept at the center of the proposed node-
programming API is that of a compute node. The API defines
the node as a C++ class that implements a specified interface,
defining necessary types and implementing required methods.
To perform a parallel computation, a user defines the work
and data constituting the computation. These items are en-
capsulated into a struct; the data members are variable,
depending on the nature of the computation, while the work
is contained in API-defined struct member functions dictated
according to the type of parallel computation (e.g., parallel
for, parallel reduce).

Figure 1 illustrates this arrangement for a simple vector
axpy operation implemented via a parallel for loop. The

SomeNode

template <class WDP>

void parallel_for(int begin, int end, WDP wd);

Data

AxpyOp

alpha, beta

x, y

Work

void execute(int i) {

}
  x[i] = alpha * x[i] + beta * y[i]; 

}

  wd.x[i] = wd.alpha * wd.x[i] + wd.beta * wd.y[i];

}

parallel for (int i=begin; i<end; ++i) {

void SomeNode::parallel_for<AxpyOp>(int begin, int end,

                                    AxpyOp wd) {

Fig. 1. Example of a vector Axpy operation under the proposed API.

data members of the AxpyOp struct are set by the caller at
runtime; the quantity and type of these members are particular
to the axpy operation. The AxpyOp object is passed to the
parallel_for computational method of the chosen node
object; each compute node is required to implement this
method. This method is templated on a work-data pair struct,
and it is required that the struct (AxpyOp, in this case) imple-
ment a method execute(). At compile time, a parallel for
loop, as implemented by the particular node, is instantiated
using the execute() operation, resulting in a parallel axpy
operation. By using this same struct with a different node
implementation, the code defining the parallel kernel (in this
case, the execute() routine) can be compiled multiple
times for multiple compute node implementations, capturing
the “write once, run anywhere” capability of OpenCL and
RapidMind.

The proposed API there consists of two parts: the require-
ments placed on node objects, and the requirements placed
on the user kernels that are submitted to node objects. The
structure of the node objects can be divided into two parts:
the memory model and the parallel computational routines.
The memory model defines the concept of a compute buffer
and the routines for interacting with these buffers. A compute
buffer is a region of memory available for computation via
parallel kernels. These memory objects are not available for
use directly by non-kernel code, nor are parallel kernels able to
access any memory resources aside from compute buffers. In
the particular case of the axpy example in Figure 1, the arrays
x and y are compute buffers, and the node implementation
specifies everything about them: where and how they are
allocated and deallocated, how they are indexed, and how they
are accessed by non-kernel code. The second purpose of the
API is to specify the parallel computational routines provided
by a compute node, as well as the requirements on a work-data
pair necessary for each parallel computational routine.

A. Memory Model
The compute buffer is not a fixed type under the API, but

instead is specified individually by each node implementation.
Given a node type Node, a user declares a compute buffer of



type float like so:

Node::buffer<float>::buffer_t my_buff;

This code simply declares a buffer object my_buff, which
references a float-valued region of memory intended for use
in a parallel kernel. The decision to use node-specific arrays
was intended to enable maximum flexibility and efficiency
on nodes with unique memory architectures. In particular, we
were concerned with compute nodes matching a host-device
model, where the host main memory is distinct from that of the
device where the parallel computations will occur. However,
for many node implementations, buffer<T>::buffer_t
will simply map to the pointer type T *. The only requirement
on the buffer type is that it supports the standard C array
indexing via the bracket operator, like my_buff[i]. This is
of course automatic for buffers implemented simply as a C
pointer; for any other type, the buffer will need to overload
the operator[] method. Furthermore, the API requires only
that this functionality be supported for kernel code executed
via one of the parallel computation routines. In the general
case, the indexing of compute buffers in non-kernel code yields
undefined results. Future requirements may include assignment
of buffers and pointer-arithmetic.

The compute buffer my_buff declared above must be
allocated before it can be used. This is done via the node’s
buffer allocation method:

template <class T>
Node::buffer<T>::buffer_t
Node::allocBuffer(int length);

Before allocation, use of a compute buffer is undefined.
Accepting a single argument length, this method allocates
a compute buffer of sufficient size to store length number
of values of type T. Even for mundane implementations of
the buffer type, the requirement to allocate compute buffers
using the allocBuffer() method might allow particular
node implementations to improve performance (e.g., via more
efficient memory layout on NUMA architectures). When an
allocated buffer is no longer needed, it should be deallocated
using the freeBuffer() method:

template <class T>
void Node::freeBuffer(

Node::buffer<T>::buffer_t buff
);

After calling freeBuffer(), use of a compute buffer is
undefined.

Of course, the application developer needs to be able to
write to a compute buffer to prepare for computation, and
likewise needs the ability to read from a compute buffer to
determine the results of said computation. The proposed API
defines six methods to address varying use cases. Three of
these methods employ copy semantics, to duplicate the results
of data from one location (compute buffer or main memory)
to another. The other three methods employ view semantics,
giving effectively direct access to the contents of a compute
buffer. The latter are not strictly necessary for the purpose of
initializing and evaluating parallel computation, but they can
in many cases be more efficient than using copy semantics.

template <class T>
void Node::copyToBuffer( int size,

const T * src,
Node::buffer<T>::buffer_t dest,
int dest_offset

);

template <class T>
void Node::copyFromBuffer( int size,

Node::buffer<const T>::buffer_t src,
int src_offset,
T * dest

);

template <class T>
void Node::copyBuffers( int size,

Node::buffer<const T>::buffer_t src,
int src_offset,
Node::buffer<T>::buffer_t dest,
int dest_offset );

copyToBuffer() copies data in main memory to the
specified compute buffer, so that dest[dest_offset+i]
is equal to src[i] for i=0,...,size-1. The call may
be implemented in an asynchronous manner. However, the
API guarantees that upon return, it is safe to write to the
memory at src, and that the effect of the copy will be
complete before the buffer dest is used by the compute node.
Similarly, copyFromBuffer() copies data from a compute
buffer to the main memory. This method is guaranteed to
return only after the memory transfer is complete. The method
copyBuffers() copies data from one compute buffer to
another. This method may be asynchronous, but as with
copyToBuffer(), the effect is guaranteed to be complete
before either buffer is needed by a parallel computation or
another memory operation.

template <class T>
T * Node::viewBuffer(

bool writeOnly, int size,
Node::buffer<T>::buffer_t buff,
int offset

);

template <class T>
const T * Node::viewBufferConst(

int size,
Node::buffer<const T>::buffer_t buff,
int offset

);

template <class T>
void Node::releaseView(

Node::buffer<T>::buffer_t buff
);

The viewBuffer() method returns a pointer to a location
in main memory containing the contents of the specified com-
pute buffer. This method is intended to allow more efficient
access for writing to the parallel buffer than may possible via
the copy methods. The write-only flag specifies that the view
will be written to but not read from; in this case, the data in
the view is undefined. If the data must be read and written to,



this flag should be set to false. Any changes made to the buffer
via its view are not required to take effect in the buffer until
the view is released (see releaseView()). If the buffer
view is read-only, the user is encouraged to create the view
using viewBufferConst(). This method is intended to
allow more efficient read-only access to a compute buffer.
For both viewBuffer() and viewBufferConst(), the
created view should be passed to releaseView() so that
any allocated resources can be recovered.

void Node::readyBuffers(
Node::buffer<const void>::buffer_t cbuffs[],
int numConstBuffers,
Node::buffer<void>::buffer_t ncbuffs[],
int numNonConstBuffers

);

The final memory routine is readyBuffers(). This
routine accepts two arrays, one to a list of const-valued
compute buffers, one to a list of non-const-valued compute
buffers. Before using any compute buffer in a parallel routine,
it is required that the buffers be “readied” by this routine. The
purpose of this routine is to ensure that the necessary compute
buffers are optimally prepared for parallel computation.

B. Parallel Computing Model

The memory model specified by the API and the imple-
mentation of that model for a particular node are critical for
achieving good performance. However, the heart of the API is
in the parallel computational routines that execute user kernels.
Currently, the API describes only two parallel structures: the
parallel for loop and the parallel reduction. Future releases of
the API will add more parallel routines, as well as fine-grained
parallel utilities such as atomics.

template <class WDP>
void Node::parallel_for(

int beg, int end, WDP wd
);

struct WDP {
void KERNEL_PREFIX execute(int i);

};

This parallel_for method, as suggested by its name,
implements a for loop in parallel, where the execute()
method of the prescribed work-data pair provides the body of
the for loop. The underlying assumption of a parallel for
is that there is no dependence between the loop iterations,
allowing them to be executed simultaneously and in any order.
The semantics of the parallel_for method dictate that
wd.execute(i) will be called exactly once for each index
i in [beg,end). The KERNEL_PREFIX occurrence is a
macro that can be expanded to provide additional compiler
pragmas when necessary/useful for particular platforms (e.g.,
CUDA’s __device__ pragma).

template <class WDP>
typename WDP::ReductionType
Node::parallel_reduce(

int begin, int end, WDP wd
);

struct WDP {
typedef ... ReductionType;

KERNEL_PREFIX ReductionType identity();
KERNEL_PREFIX ReductionType generate(int i);
KERNEL_PREFIX ReductionType

reduce(ReductionType x, ReductionType y);
};

A reduction operation is a computation that combines a
set of values via some associative reduction operator (e.g.,
sum, product, min, max). A parallel reduction performs this
operation in parallel, typically by performing a parallel fan-in,
under the assumption that the entries can be generated and
reduced in any order. The API requires that to be used with
parallel_reduce(), a work-data pair struct must define
a typedef ReductionType, indicating the value type for the
reduction operation, as well as the following methods:
• a method generate(), which generates the values to

be reduced;
• a method reduce(), which accepts two
ReductionType arguments and performs the
reduction operator; and

• a method identity(), which specifies a
ReductionType element representing the identity
under the operation reduce().

The implementation of parallel_reduce() will re-
turn the reduction of all generated values in the range
[begin,end), having called generate() exactly once
for each of the indices in that range (the latter is useful,
as it permits predictable behavior in scenarios where the
generate() method has side-effects.)

III. EXAMPLE NODES

The following sections describe two different implementa-
tions of the proposed node API, for the purpose of illustrating
the individual components. These nodes effectively wrap the
Intel TBB and NVIDIA CUDA parallel interfaces.

A. Intel TBB

This section discusses the implementation of a node
class TBBNode corresponding to a Intel Threading Building
Blocks (TBB) back-end. Intel TBB [7] is a C++ library using
templates which allows users to write code to be run on a
homogenous multicore CPU. The benefit of TBB is that it
frees the user from concern regarding the complications of the
thread library for the particular system; threads are initialized
once by the TBB runtime, then assigned to parallel tasks
whenever the user passes work to TBB.

Because there is no distinction between the main
memory and the memory used for parallel compu-
tation, the memory model for TBBNode is straight-
forward. The buffer type is a simple C pointer; i.e.,
TBBNode::buffer<T>::buffer_t is simply T *. The
buffer allocation and deallocation can be implemented, for ex-
ample, via the malloc() and free() standard C routines.
The buffer copy methods are implemented via some standard



copy method (e.g., memcpy() or std::copy()); the view
creation method simply returns the appropriate pointer into the
buffer, and releaseView() is a no-op.

All that remains for TBBNode is to implement the
parallel_for() and parallel_reduction()
methods. The TBB library provides similar
functionality via the tbb::parallel_for() and
tbb::parallel_reduce() methods. As with the
proposed API, these methods exploit C++ templates and
compile-time polymorphism to enable the user to specify
both the work and the data defining these operations. In
implementing the TBBNode class to target this back-end, it
is simply a matter of wrapping our work-data pairs into the
form expected by TBB and passing these on to the parallel
for and parallel reduction methods of TBB. Because both
the proposed API and TBB have explicitly defined interfaces,
it is trivial to write adaptors from the former to the latter.

B. NVIDIA CUDA

The effort in implementing a node for a GPU is significantly
harder than for the TBB case. To begin with, the TBB
library provided implementations for the required parallel
computations, whereas CUDA will require some amount of
development specific to GPU platform. This development will
necessarily be conducted in the CUDA language (as opposed
to C/C++), and ultimately the relevant code must be passed
through the CUDA compiler. Furthermore, due to the host-
device divide currently present for most GPU platforms, the
effort in implementing the memory model for this node will
certainly exceed that required, for example, by the TBB node.
Our current proof-of-concept implementation of a CUDA
compute node allocates both host and device memory for each
compute buffer. By keeping track of dirty bits, this enables the
node implementation to be very frugal regarding expensive
data movements between host and device memory.

Regarding the implementation of the parallel computa-
tion routines, the CUDA framework makes implementing
parallel_for() rather easy. The parallel reduction algo-
rithm is a little more complicated, but numerous resources [2]
outline methods for performing this operation with maximal
efficiency. The only change to these is to ensure that the
generate() and reduce() methods of the work-data pair
object are used appropriately.

C. Numerical Results
For testing purpose, we implemented the proposed API

for three node types: a trivial sequential node called
SerialNode; a interface to Intel TBB called TBBNode; and
a node using CUDA for NVIDIA GPUs called CUDANode.
These nodes were evaluated using a simple inner product,
computed using the node’s parallel_reduce() function-
ality coupled with the following dot-product kernel:

template <class Node>
struct DotOp {

typename Node::template
buffer<const float>::buffer_t x, y;

typedef float ReductionType;

static KERNEL_PREFIX float
identity() { return 0.0f; }

KERNEL_PREFIX float
generate(int i) { return x[i]*y[i]; }

KERNEL_PREFIX float
reduce(float x, float y) { return x+y; }

};

The results for the three node implementations, for varying
problem sizes, are shown in Table I. The SerialNode yields
consistent performance for the tested vector lengths, while
larger vector lengths better amortize the latency involved in
launching the multi-threaded kernels associated with the TBB
and CUDA implementations. For the largest tested problem
size, the TBB and CUDA implementation provide 3.5x and
6x speedup, respectively, over the serial implementation.

TABLE I
DOT-PRODUCT RESULTS FOR SERIALNODE, TBBNODE, AND

CUDANODE IMPLEMENTATIONS. CPU TESTS ARE RUN ON A NODE WITH
DUAL QUAD-CORE INTEL “HARPERTOWN” CPU CLOCKED AT 3.16 GHZ.
THE GPU TESTS WERE RUN ON A NVIDIA 280GTX PROCESSOR WITH
REFERENCE SPECIFICATIONS. THE FLOP RATE IS COMPUTED OVER 1000

CALLS TO THE DOT-PRODUCT KERNEL.

Results are single-precision giga-flops per second
Vector Size SerialNode TBBNode CUDANode

10K 1.8 1.5 0.2
100K 1.9 4.4 1.8
10M 1.9 6.7 11.5

IV. CONCLUSION

Multicore and manycore nodes provide an increasingly
important computing resource. In order to obtain high per-
formance, we need to develop algorithms and software to
specifically utilize these nodes. At the same time, current
programming models are not adequately portable and standard.
We have proposed an API that allows users to write portable
kernels that can be run on a variety of multicore nodes,
demonstrating its use on serial, TBB and CUDA node types.
Similar to some current parallel computing efforts, kernel
developers are able to develop in a single language, to a single
programming model. However, unlike other efforts, node de-
velopers are fully capable of writing custom implementations
for any desired node type. This ability is a necessity for node
types not supported by proprietary approaches, and it can be
useful as well for tuning the performance of popular node
types. Although the example given in this paper is simple, we
have utilized our node API to implement a variety of basic
linear algebra kernels and will use the API as the foundation
for our linear algebra kernels. The API is composable with
an inter-node programming model such as MPI, providing a
complete parallel capability for scalable multicore computing.
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